Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Physiol ; 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348606

ABSTRACT

We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.

2.
HIV Med ; 25(1): 143-149, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37589182

ABSTRACT

INTRODUCTION: Decreased physical activity is a major cardiovascular risk factor that is particularly pronounced in people living with HIV (PLHIV), who are more susceptible to endothelial dysfunction and accelerated atherosclerosis than the general population due to multiple mechanisms. The aim of the present study was to analyse whether regular physical activity is capable of improving endothelial function measured by flow-mediated dilatation (FMD) in PLHIV. METHODS: We performed FMD measurement in 38 PLHIV, along with the assessment of their regular physical activity level using the International Physical Activity Questionnaire (IPAQ). RESULTS: Flow-mediated dilatation results in PLHIV were 0.31 ± 0.06 mm and 7.34% ± 1.41% for absolute and relative FMD, respectively. IPAQ results showed that the average weekly level of physical activity was 3631.1 ± 1526.7 MET-min/week, whereas the average daily sitting time was 287.3 ± 102.7 min/day. Predictors jointly accounted for 48% (adjusted value 42%) of FMD variance. Bootstrapped confidence levels revealed that physical activity had a statistically significant effect on the outcome [beta = 0.517, 2.5% confidence interval (CI) = 0.205, 97.5% CI = 0.752]. CONCLUSION: Physical activity represents a widely available and uncostly tool that is capable of improving endothelial function and overall cardiovascular health in PLHIV.


Subject(s)
Atherosclerosis , HIV Infections , Humans , HIV Infections/complications , Exercise , Endothelium, Vascular , Vasodilation
3.
Sci Rep ; 13(1): 12904, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558729

ABSTRACT

Insight into the clinical potential of convalescent plasma in patients with coronavirus disease (COVID-19) is important given the severe clinical courses in unvaccinated and seronegative individuals. The aim of the study was to investigate whether there is a survival benefit of convalescent plasma therapy in COVID-19 patients. The authors independently assessed randomized controlled trials (RCTs) identified by the search strategy for inclusion, extracted data, and assessed risk of bias. The binary primary outcome was all-cause mortality. Risk ratio (RR) of the convalescent plasma treatment (vs. best standard care) and its associated standard error (effect size) were calculated. A random-effects model was employed to statistically pool the effect sizes of the selected studies. We included 19 RCTs with 17,021 patients. The random-effects model resulted in an estimated pooled RR of 0.94 (95% CI 0.81-1.08, p = 0.33), showing no statistical evidence of the benefit of convalescent plasma therapy on all-cause mortality. Convalescent plasma therapy was not found to be effective in reducing all-cause mortality in COVID-19 patients. Further studies are needed to determine in which patients convalescent plasma therapy may lead to a reduction in mortality.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , COVID-19/etiology , COVID-19 Serotherapy , SARS-CoV-2 , Immunization, Passive/methods , Bias
4.
Top Spinal Cord Inj Rehabil ; 29(2): 34-42, 2023.
Article in English | MEDLINE | ID: mdl-37235195

ABSTRACT

Background: Spinal cord injury (SCI) is associated with an increased risk and prevalence of cardiopulmonary and cerebrovascular disease-related morbidity and mortality. The factors that initiate, promote, and accelerate vascular diseases and events in SCI are poorly understood. Clinical interest in circulating endothelial cell-derived microvesicles (EMVs) and their microRNA (miRNA) cargo has intensified due to their involvement in endothelial dysfunction, atherosclerosis, and cerebrovascular events. Objectives: The aim of this study was to determine whether a subset of vascular-related miRNAs is differentially expressed in EMVs isolated from adults with SCI. Methods: We assessed eight adults with tetraplegia (7 male/1 female; age: 46±4 years; time since injury: 26±5 years) and eight uninjured (6 male/2 female; age: 39±3 years). Circulating EMVs were isolated, enumerated, and collected from plasma by flow cytometry. The expression of vascular-related miRNAs in EMVs was assessed by RT-PCR. Results: Circulating EMV levels were significantly higher (~130%) in adults with SCI compared with uninjured adults. The expression profile of miRNAs in EMVs from adults with SCI were significantly different than uninjured adults and were pathologic in nature. Expression of miR-126, miR-132, and miR-Let-7a were lower (~100-150%; p < .05), whereas miR-30a, miR-145, miR-155, and miR-216 were higher (~125-450%; p < .05) in EMVs from adults with SCI. Conclusion: This study is the first examination of EMV miRNA cargo in adults with SCI. The cargo signature of vascular-related miRNAs studied reflects a pathogenic EMV phenotype prone to induce inflammation, atherosclerosis, and vascular dysfunction. EMVs and their miRNA cargo represent a novel biomarker of vascular risk and a potential target for intervention to alleviate vascular-related disease after SCI.


Subject(s)
Atherosclerosis , Cell-Derived Microparticles , MicroRNAs , Spinal Cord Injuries , Humans , Male , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Pilot Projects , Spinal Cord Injuries/metabolism , Cell-Derived Microparticles/metabolism , Cell-Derived Microparticles/pathology , Atherosclerosis/metabolism , Atherosclerosis/pathology
5.
Am J Physiol Heart Circ Physiol ; 323(6): H1311-H1322, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36367686

ABSTRACT

Cervical spinal cord injury (SCI) leads to autonomic cardiovascular dysfunction that underlies the three- to fourfold elevated risk of cardiovascular disease in this population. Reduced common carotid artery (CCA) dilatory responsiveness during the cold-pressor test (CPT) is associated with greater cardiovascular disease risk and progression. The cardiovascular and CCA responses to the CPT may provide insight into cardiovascular autonomic dysfunction and cardiovascular disease risk in individuals with cervical SCI. Here, we used CPT to perturb the autonomic nervous system in 14 individuals with cervical SCI and 12 uninjured controls, while measuring cardiovascular responses and CCA diameter. The CCA diameter responses were 55% impaired in those with SCI compared with uninjured controls (P = 0.019). The CCA flow, velocity, and shear response to CPT were reduced in SCI by 100% (P < 0.001), 113% (P = 0.001), and 125% (P = 0.002), respectively. The association between mean arterial pressure and CCA dilation observed in uninjured individuals (r = 0.54, P = 0.004) was absent in the SCI group (r = 0.22, P = 0.217). Steady-state systolic blood pressure (P = 0.020), heart rate (P = 0.003), and cardiac contractility (P < 0.001) were reduced in those with cervical SCI, whereas total peripheral resistance was increased compared with uninjured controls (P = 0.042). Relative cerebral blood velocity responses to CPT were increased in the SCI group and reduced in controls (middle cerebral artery, P = 0.010; posterior cerebral artery, P = 0.026). The CCA and cardiovascular responsiveness to CPT are impaired in those with cervical SCI.NEW & NOTEWORTHY This is the first study demonstrating that CCA responses during CPT are suppressed in SCI. Specifically, CCA diameter, flow, velocity, and shear rate were reduced. The relationship between changes in MAP and CCA dilatation in response to CPT was absent in individuals with SCI, despite similar cardiovascular activation between SCI and uninjured controls. These findings support the notion of elevated cardiovascular disease risk in SCI and that the cardiovascular responses to environmental stimuli are impaired.


Subject(s)
Autonomic Nervous System Diseases , Cardiovascular Diseases , Cervical Cord , Spinal Cord Injuries , Humans , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Carotid Artery, Common , Carotid Arteries , Middle Cerebral Artery , Spinal Cord Injuries/complications
6.
Exp Physiol ; 107(11): 1225-1240, 2022 11.
Article in English | MEDLINE | ID: mdl-35993480

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does the hyperbaric, hypercapnic, acidotic, hypoxic stress of apnoea diving lead to greater pulmonary vasoreactivity and increased right heart work in apnoea divers? What is the main finding and its importance? Compared with sex- and age-matched control subjects, divers experienced significantly less change in total pulmonary resistance in response to short-duration isocapnic hypoxia. With oral sildenafil (50 mg), there were no differences in total pulmonary resistance between groups, suggesting that divers can maintain normal pulmonary artery tone in hypoxic conditions. Blunted hypoxic pulmonary vasoconstriction might be beneficial during apnoea diving. ABSTRACT: Competitive apnoea divers dive repetitively to depths >50 m. During the final portions of ascent, divers experience significant hypoxaemia. Additionally, hyperbaria during diving increases thoracic blood volume while simultaneously reducing lung volume and increasing pulmonary artery pressure. We hypothesized that divers would have exaggerated hypoxic pulmonary vasoconstriction, leading to increased right heart work owing to their repetitive hypoxaemia and hyperbaria, and that the administration of sildenafil would have a greater effect in reducing pulmonary resistance in divers. We recruited 16 divers (Divers) and 16 age- and sex-matched non-diving control subjects (Controls). Using a double-blinded, placebo-controlled, cross-over design, participants were evaluated for normal cardiac and lung function, then their cardiopulmonary responses to 20-30 min of isocapnic hypoxia (end-tidal partial pressure of O2  = 50 mmHg) were measured 1 h after ingestion of 50 mg sildenafil or placebo. Cardiac structure and cardiopulmonary function were similar at baseline. With placebo, Divers had a significantly smaller increase in total pulmonary resistance than Controls after 20-30 min isocapnic hypoxia (change -3.85 ± 72.85 vs. 73.74 ± 91.06 dyns cm-5 , P = 0.0222). With sildenafil, Divers and Controls had similar blunted increases in total pulmonary resistance after 20-30 min of hypoxia. Divers also had a significantly lower systemic vascular resistance after sildenafil in normoxia. These data indicate that repetitive apnoea diving leads to a blunted hypoxic pulmonary vasoconstriction. We suggest that this is a beneficial adaption allowing for increased cardiac output with reduced right heart work and thus reducing cardiac oxygen utilization in hypoxaemic conditions.


Subject(s)
Apnea , Vasoconstriction , Humans , Hypoxia , Lung , Oxygen , Sildenafil Citrate , Double-Blind Method , Cross-Over Studies
7.
J Sci Med Sport ; 25(7): 553-556, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35466041

ABSTRACT

OBJECTIVES: During apnea diving, a patent foramen ovale may function as a pressure relief valve under conditions of high pulmonary pressure, preserving left-ventricular output. Patent foramen ovale prevalence in apneic divers has not been previously reported. We aimed to determine the prevalence of patent foramen ovale in apneic divers compared to non-divers. DESIGN: Cross sectional. METHODS: Apnea divers were recruited from a training camp in Cavtat, Croatia and the diving community of Split, Croatia. Controls were recruited from the population of Split, Croatia and Eugene, Oregon, USA. Participants were instrumented with an intravenous catheter and underwent patent foramen ovale screening utilizing transthoracic saline contrast echocardiography. Appearance of microbubbles in the left heart within 3 cardiac cycles indicated the presence of patent foramen ovale. Lung function was measured with spirometry. Comparison of patent foramen ovale prevalence was conducted using chi-square analysis, p < .05. RESULTS: Apnea divers had a significantly higher prevalence of patent foramen ovale (19 of 36, 53%) compared to controls (9 of 36, 25%) (X2 (1, N = 72) = 5.844, p = .0156). CONCLUSIONS: Why patent foramen ovale prevalence is greater in apnea divers remains unknown, though hyperbaria during an apnea dive results in a translocation of blood volume centrally with a concomitant reduction in lung volume and alveolar hypoxia during ascent results in hypoxic pulmonary vasoconstriction. These conditions increase pulmonary arterial pressure, increasing right-atrial pressure allowing for right-to-left blood flow through a patent foramen ovale which may be beneficial for preserving cardiac output and reducing capillary hydrostatic forces.


Subject(s)
Decompression Sickness , Diving , Foramen Ovale, Patent , Apnea/complications , Breath Holding , Cross-Sectional Studies , Decompression Sickness/complications , Decompression Sickness/prevention & control , Foramen Ovale, Patent/complications , Foramen Ovale, Patent/diagnostic imaging , Foramen Ovale, Patent/epidemiology , Humans , Prevalence
8.
J Cereb Blood Flow Metab ; 42(6): 1120-1135, 2022 06.
Article in English | MEDLINE | ID: mdl-35061562

ABSTRACT

Voluntary asphyxia imposed by static apnea challenges blood-brain barrier (BBB) integrity in humans through transient extremes of hypertension, hypoxemia and hypercapnia. In the present study, ten ultra-elite breath-hold divers performed two maximal dry apneas preceded by normoxic normoventilation (NX: severe hypoxemia and hypercapnia) and hyperoxic hyperventilation (HX: absence of hypoxemia with exacerbating hypercapnia) with measurements obtained before and immediately after apnea. Transcerebral exchange of NVU proteins (ELISA, Single Molecule Array) were calculated as the product of global cerebral blood flow (gCBF, duplex ultrasound) and radial arterial to internal jugular venous concentration gradients. Apnea duration increased from 5 m 6 s in NX to 15 m 59 s in HX (P = <0.001) resulting in marked elevations in gCBF and venous S100B, glial fibrillary acidic protein, ubiquitin carboxy-terminal hydrolase-L1 and total tau (all P < 0.05 vs. baseline). This culminated in net cerebral output reflecting mildly increased BBB permeability and increased neuronal-gliovascular reactivity that was more pronounced in NX due to more severe systemic and intracranial hypertension (P < 0.05 vs. HX). These findings identify the hemodynamic stress to which the apneic brain is exposed, highlighting the critical contribution of hypoxemia and not just hypercapnia to BBB disruption.


Subject(s)
Apnea , Hypercapnia , Apnea/metabolism , Blood-Brain Barrier/metabolism , Humans , Hypoxia/metabolism , Permeability
9.
Appl Physiol Nutr Metab ; 47(3): 269-277, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34739759

ABSTRACT

Individuals with cervical spinal cord injury (SCI) are at an increased risk for cardiovascular disease. Exercise is well-established for preventing cardiovascular disease; however, there are limited straightforward and safe exercise approaches for increasing the activity of the cardiorespiratory system after cervical SCI. The objective of this study was to investigate the cardiorespiratory response to passive leg cycling in people with cervical SCI. Beat-by-beat blood pressure, heart rate, and cerebral blood flow were measured before and throughout 10 minutes of cycling in 11 people with SCI. Femoral artery flow-mediated dilation was also assessed before and immediately after passive cycling. Safety was monitored throughout all study visits. Passive cycling elevated systolic blood pressure (5 ± 2 mm Hg), mean arterial pressure (5 ± 3 mm Hg), stroke volume (2.4 ± 0.8 mL), heart rate (2 ± 1 beats/min) and cardiac output (0.3 ± 0.07 L/min; all p < 0.05). Minute ventilation (0.67 ± 0.23 L/min), tidal volume (70 ± 30 mL) and end-tidal PO2 (2.6 ± 1.23 mm Hg) also increased (all p < 0.05). Endothelial function was improved immediately after exercise (1.62 ± 0.13%, p < 0.01). Passive cycling resulted in an incidence of autonomic dysreflexia. Therefore, passive leg cycling increased the activity of the cardiorespiratory system and improved endothelial function, indicating it may be a beneficial exercise intervention for the cardiovascular and respiratory systems in people with cervical SCI. Novelty: Passive leg cycling increases the activity of the cardiorespiratory system and improves markers of cardiovascular health in cervical SCI. Passive leg cycling exercise is an effective, low-cost, practical, alternative exercise modality for people with cervical SCI.


Subject(s)
Leg , Spinal Cord Injuries , Bicycling , Exercise/physiology , Heart Rate/physiology , Humans , Quadriplegia , Spinal Cord Injuries/complications
10.
J Appl Physiol (1985) ; 130(5): 1345-1350, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33600279

ABSTRACT

In this case study, we evaluate the unique physiological profiles of two world-champion breath-hold divers. At close to current world-record depths, the extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure are profound. As such, these professional athletes must be capable of managing such stress, to maintain performing at the forefront human capacity. In both divers, pulmonary function before and after deep dives to 102 m and 117 m in the open sea was assessed using noninvasive pulmonary gas exchange (indexed via the O2 deficit, which is analogous to the traditional alveolar to arterial oxygen difference), ultrasound B-line scores, airway resistance, and airway reactance. Hydrostatic-induced lung compression was also quantified via spirometry. Both divers successfully performed their dives. Pulmonary gas exchange efficiency was impaired in both divers at 10 min but had mostly restored within a few hours. Mild hemoptysis was transiently evident immediately following the 117-m dive, whereas both divers experienced nitrogen narcosis. Although B-lines were only elevated in one diver postdive, reductions in airway resistance and reactance occurred in both divers, suggesting that the compressive strain on the structural characteristics of the airways can persist for up to 3.5 h. Marked echocardiographic dyssynchrony was evident in one diver after 10 m of descent, which persisted until resolving at ∼77 m during ascent. In summary, despite the enormous hydrostatic and physiological stress to diving beyond 100 m on a single breath, these data provide valuable insight into the extraordinary capacity of those at the pinnacle of apneic performance.NEW & NOTEWORTHY This study shows that world-champion breath-hold divers demonstrate incredible tolerability to extreme levels of hydrostatic-induced lung compression. Immediately following dives to >100 m, there were acute impairments in pulmonary gas exchange efficiency, mild accummulation of extravascular lung fluid, noticable intrathoracic discomfort, and evident nitrogen narcosis, however, within a few hours, these had all mostly resolved.


Subject(s)
Diving , Breath Holding , Humans , Oxygen , Respiratory Physiological Phenomena , Spirometry
11.
Exp Physiol ; 106(4): 1120-1133, 2021 04.
Article in English | MEDLINE | ID: mdl-33559974

ABSTRACT

NEW FINDINGS: What is the central question of this study? How does deep breath-hold diving impact cardiopulmonary function, both acutely and over the subsequent 2.5 hours post-dive? What is the main finding and its importance? Breath-hold diving, to depths below residual volume, is associated with acute impairments in pulmonary gas exchange, which typically resolve within 2.5 hours. These data provide new insight into the behaviour of the lungs and pulmonary vasculature following deep diving. ABSTRACT: Breath-hold diving involves highly integrative and extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure. Over two diving training camps (Study 1 and 2), 25 breath-hold divers (recreational to world-champion) performed 66 dives to 57 ± 20 m (range: 18-117 m). Using the deepest dive from each diver, temporal changes in cardiopulmonary function were assessed using non-invasive pulmonary gas exchange (indexed via the O2 deficit), ultrasound B-line scores, lung compliance and pulmonary haemodynamics at baseline and following the dive. Hydrostatically induced lung compression was quantified in Study 2, using spirometry and lung volume measurement, enabling each dive to be categorized by its residual volume (RV)-equivalent depth. From both studies, pulmonary gas exchange inefficiency - defined as an increase in O2 deficit - was related to the depth of the dive (r2  = 0.345; P < 0.001), with dives associated with lung squeeze symptoms exhibiting the greatest deficits. In Study 1, although B-lines doubled from baseline (P = 0.027), cardiac output and pulmonary artery systolic pressure were unchanged post-dive. In Study 2, dives with lung compression to ≤RV had higher O2 deficits at 9 min, compared to dives that did not exceed RV (24 ± 25 vs. 5 ± 8 mmHg; P = 0.021). The physiological significance of a small increase in estimated lung compliance post-dive (via decreased and increased/unaltered airway resistance and reactance, respectively) remains equivocal. Following deep dives, the current study highlights an integrated link between hydrostatically induced lung compression and transient impairments in pulmonary gas exchange efficiency.


Subject(s)
Breath Holding , Pulmonary Gas Exchange , Cardiac Output , Residual Volume , Spirometry
12.
Exp Physiol ; 105(9): 1540-1549, 2020 09.
Article in English | MEDLINE | ID: mdl-32618374

ABSTRACT

NEW FINDINGS: What is the central question of this study? What are the characteristics of cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. What is the main finding and its importance? Acute alterations in CBF regulation at rest, including extra-cranial vasodilatation, reductions in shear patterns and elevations in intra-cranial blood velocity were observed at rest following a single SCUBA dive. These subtle changes in CBF regulation did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or neurovascular coupling following a single SCUBA dive. ABSTRACT: Reductions in vascular function during a SCUBA dive - due to hyperoxia-induced oxidative stress, arterial and venous gas emboli and altered endothelial integrity - may also extend to the cerebrovasculature following return to the surface. This study aimed to characterize cerebral blood flow (CBF) regulation following a single SCUBA dive to a depth of 18 m sea water with a 47 min bottom time. Prior to and following the dive, participants (n = 11) completed (1) resting CBF in the internal carotid (ICA) and vertebral (VA) arteries (duplex ultrasound) and intra-cranial blood velocity (v) of the middle and posterior cerebral arteries (MCAv and PCAv, respectively) (transcranial Doppler ultrasound); (2) cerebrovascular reactivity to acute poikilocapnic hypoxia (i.e. FIO2 , 0.10) and hyperoxia (i.e. FIO2 , 1.0); and (3) neurovascular coupling (NVC; regional CBF response to local increases in cerebral metabolism). Global CBF, cerebrovascular reactivity to hypoxia and hyperoxia, and NVC were unaltered following a SCUBA dive (all P > 0.05); however, there were subtle changes in other cerebrovascular metrics post-dive, including reductions in ICA (-13 ± 8%, P = 0.003) and VA (-11 ± 14%, P = 0.021) shear rate, lower ICAv (-10 ± 9%, P = 0.008) and VAv (-9 ± 14%, P = 0.028), increases in ICA diameter (+4 ± 5%, P = 0.017) and elevations in PCAv (+10 ± 19%, P = 0.047). Although we observed subtle alterations in CBF regulation at rest, these changes did not translate into any functional changes in cerebrovascular reactivity to hypoxia or hyperoxia, or NVC. Whether prolonged exposure to hyperoxia and hyperbaria during longer, deeper, colder and/or repetitive SCUBA dives would provoke changes to the cerebrovasculature requires further investigation.


Subject(s)
Cerebrovascular Circulation , Diving/physiology , Hyperoxia/physiopathology , Hypoxia/physiopathology , Neurovascular Coupling , Adult , Humans , Male , Middle Aged , Vasodilation
13.
Clin Sci (Lond) ; 134(7): 777-789, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32219341

ABSTRACT

People with spinal cord injury (SCI) have three- to four-fold greater risk of cardiovascular disease (CVD) compared with those without SCI. Although circulating extracellular microvesicles are key effectors of vascular health and disease, how their functional phenotype might be altered with SCI is unknown. The aim of the present study was to determine the effects of microvesicles isolated from SCI adults on endothelial cell inflammation and oxidative stress as well as endothelial nitric oxide (NO) synthase (eNOS) activation and tissue-type plasminogen activator (t-PA) expression. Eighteen young and middle-aged adults were studied: 10 uninjured (7M/3F; age: 39 ± 3 years) and 8 cervical level spinal cord injured (SCI; 7M/1F; 46 ± 4 years; cervical injury: C3: n=1; C5: n=4; C6: n=3). Circulating microvesicles were isolated, enumerated and collected from plasma by flow cytometry. Human umbilical vein endothelial cells (HUVECs) were cultured and treated with microvesicles from either the uninjured or SCI adults. Microvesicles from SCI adults did not affect cellular markers or mediators of inflammation and oxidative stress. However, microvesicles from the SCI adults significantly blunted eNOS activation, NO bioavailability and t-PA production. Intercellular expression of phosphorylated eNOS at Ser1177 and Thr495 sites, specifically, were ∼65% lower and ∼85% higher, respectively, in cells treated with microvesicles from SCI compared with uninjured adults. Decreased eNOS activity and NO production as well as impaired t-PA bioavailability renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Thus, circulating microvesicles may contribute to the increased risk of vascular disease and thrombotic events associated with SCI.


Subject(s)
Cell-Derived Microparticles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Spinal Cord Injuries/blood , Adult , Case-Control Studies , Cell-Derived Microparticles/pathology , Cells, Cultured , Cytokines/metabolism , Female , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation Mediators/metabolism , Male , Middle Aged , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress , Phosphorylation , Spinal Cord Injuries/pathology , Tissue Plasminogen Activator/metabolism
14.
J Cereb Blood Flow Metab ; 40(3): 656-666, 2020 03.
Article in English | MEDLINE | ID: mdl-30841780

ABSTRACT

Intimate communication between neural and vascular structures is required to match neuronal metabolism to blood flow, a process termed neurovascular coupling. The number of laboratories assessing neurovascular coupling in humans is increasing due to clinical interest in disease states, and basic science interest in a non-anesthetized, non-craniotomized, unrestrained, in vivo model. However, there is a lack of knowledge regarding how best to characterize the neurovascular response. To address this knowledge gap, we have amassed a highly powered human neurovascular coupling dataset, and deployed a network-based approach to reveal the most powerful and consistent metrics for quantifying neurovascular coupling. Using dimensionality reduction, community-based clustering, and majority-voting of traditional metrics (e.g. peak response, time to peak) and non-traditional metrics (e.g. varying time windows, pulsatility), we have identified which of the existing metrics predominantly characterize the neurovascular coupling response, are stable within and across participants, and explain the vast majority of the variance within our dataset of over 300 trials. We then harnessed our empirical approach to generate powerful novel metrics of neurovascular coupling, termed iAmplitude, iRate, and iPulsatility, which increase sensitivity when capturing population differences. These metrics may be useful to optimally understand neurovascular coupling in health and disease.


Subject(s)
Databases, Factual , Magnetic Resonance Imaging , Neurovascular Coupling , Female , Humans , Male
15.
Can J Physiol Pharmacol ; 98(2): 124-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31505129

ABSTRACT

The pathogenesis of predominantly neurological decompression sickness (DCS) is multifactorial. In SCUBA diving, besides gas bubbles, DCS has been linked to microparticle release, impaired endothelial function, and platelet activation. This study focused on vascular damage and its potential role in the genesis of DCS in breath-hold diving. Eleven breath-hold divers participated in a field study comprising eight deep breath-hold dives with short surface periods and repetitive breath-hold dives lasting for 6 h. Endothelium-dependent vasodilation of the brachial artery, via flow-mediated dilation (FMD), and the number of microparticles (MPs) were assessed before and after each protocol. All measures were analyzed by two-way within-subject ANOVA (2 × 2 ANOVA; factors: time and protocol). Absolute FMD was reduced following both diving protocols (p < 0.001), with no interaction (p = 0.288) or main effect of protocol (p = 0.151). There was a significant difference in the total number of circulating MPs between protocols (p = 0.007), where both increased post-dive (p = 0.012). The number of CD31+/CD41- and CD66b+ MP subtypes, although different between protocols (p < 0.001), also increased by 41.0% ± 56.6% (p = 0.050) and 60.0% ± 53.2% (p = 0.045) following deep and repetitive breath-hold dives, respectively. Both deep and repetitive breath-hold diving lead to endothelial dysfunction that may play an important role in the genesis of neurological DCS.


Subject(s)
Blood Vessels/physiopathology , Breath Holding , Diving/adverse effects , Cell-Derived Microparticles/metabolism , Humans , Time Factors , Vasodilation
16.
Neurology ; 93(24): e2181-e2191, 2019 12 10.
Article in English | MEDLINE | ID: mdl-31694923

ABSTRACT

OBJECTIVE: To determine the population-level odds of individuals with spinal cord injury (SCI) experiencing fatigue and sleep apnea, to elucidate relationships with level and severity of injury, and to examine associations with abnormal cerebrovascular responsiveness. METHODS: We used population-level data, meta-analyses, and primary physiologic assessments to provide a large-scale integrated assessment of sleep-related complications after SCI. Population-level and meta-analyses included more than 60,000 able-bodied individuals and more than 1,800 individuals with SCI. Physiologic assessments were completed on a homogenous sample of individuals with cervical SCI and matched controls. We examined the prevalence of (1) self-reported chronic fatigue, (2) clinically identified sleep apnea, and 3) cerebrovascular responsiveness to changing CO2. RESULTS: Logistic regression revealed a 7-fold elevated odds of chronic fatigue after SCI (odds ratio [OR] 7.9, 95% confidence interval [CI] 3.5-16.2), and that fatigue and trouble sleeping are correlated with the level and severity of injury. We further show that those with SCI experience elevated risk of clinically defined sleep-disordered breathing in more than 600 individuals with SCI (pooled OR 3.1, 95% CI 1.3-7.5). We confirmed that individuals with SCI experience a high rate of clinically defined sleep apnea using primary polysomnography assessments. We then provide evidence using syndromic analysis that sleep-disordered breathing is a factor strongly associated with impaired cerebrovascular responsiveness to CO2 in patients with SCI. CONCLUSIONS: Individuals with SCI have an increased prevalence of sleep-disordered breathing, which may partially underpin their increased risk of stroke. There is thus a need to integrate sleep-related breathing examinations into routine care for individuals with SCI.


Subject(s)
Sleep Apnea Syndromes/epidemiology , Spinal Cord Injuries/complications , Adult , Aged , Female , Humans , Male , Middle Aged , Prevalence , Sleep Apnea Syndromes/etiology
17.
Spinal Cord ; 57(11): 979-984, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31289366

ABSTRACT

STUDY DESIGN: Experimental study. OBJECTIVES: Compromised cerebrovascular function likely contributes to elevated neurological risk in spinal cord injury (SCI). Passive heating offers many cardiovascular and neurological health benefits; therefore, we aimed to determine the effects of an acute bout of heating on cerebrovascular function in chronic SCI. METHODS: Persons with cervical SCI (n = 15) and uninjured controls (CON; n = 15) completed 60 min of lower limb hot water immersion (40 °C). Assessments of middle cerebral (MCA) and posterior cerebral artery (PCA) velocities, pulsatilities, and neurovascular coupling (NVC) were performed using transcranial Doppler ultrasound. Duplex ultrasonography was used to index cerebral blood flow via the internal carotid artery (ICA), and carotid-femoral pulse-wave velocity (PWV) was measured using tonometry. The NVC response was quantified as the peak hyperemic value during 30-s cycles of visual stimulation. RESULTS: Mean arterial pressure changed differentially with heating [mean (standard deviation); SCI: +6(14) mmHg, CON: -8(12) mmHg; P = 0.01]. There were no differences in any intracranial artery measures (all P > 0.05), except for small (~10%) increases in MCA conductance in CON after heating vs. SCI (interaction P = 0.006). Resting ICA flow was greater in SCI vs. CON (P = 0.03) but did not change with heating in either group (interaction P = 0.34). There were also no between-group differences in the NVC response (ΔPCA conductance) pre- [SCI: 29(19)% vs. CON: 30(9)%] or post-heating [SCI 30(9)% vs. 25(9)%; interaction P = 0.22]. CONCLUSIONS: Mild acute heating does not impair or improve cerebrovascular function in SCI or CON. Thus, further study of the effects of chronic heating interventions are warranted.


Subject(s)
Cerebrovascular Circulation/physiology , Cervical Vertebrae/diagnostic imaging , Hyperthermia, Induced/methods , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , Adult , Cervical Vertebrae/injuries , Female , Humans , Hyperthermia, Induced/trends , Male , Middle Aged , Spinal Cord Injuries/therapy
18.
J Int Soc Sports Nutr ; 16(1): 27, 2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31272457

ABSTRACT

BACKGROUND: The aim of this international study was to investigate the prevalence of the use of sports supplements among young athletes, as well as their knowledge and attitudes towards sports supplementation. METHODS: Organized survey study testing the level of knowledge, attitudes, beliefs and practices concerning the use of sports supplements was administered to 348 athletes, 15-18 year olds from 4 countries competing in 18 sports at the international level. RESULTS: The prevalence rate of the intake of sports supplements was 82.2%, with the protein supplements being predominant (54.5%). Coaches were identified as the primary source of information regarding supplementation (41.4%). The enhancement of athletic performance (35.4%) was the major motivation for the supplements intake. The majority of athletes (72.1%) were aware of associated health risks. The young athletes possess varying levels of knowledge regarding their own supplementation. The obtained data about the level of knowledge were statistically analyzed using the correspondence analysis. Less than 40% of athletes had the knowledge about the proper and intended use of protein, creatine, amino acids, beta alanine and glutamine, while they had greater understanding about vitamins and minerals, sports drinks and caffeine. The athletes in developed countries had greater access and utilization of professional resources such as dieticians. Young athletes are still unfamiliar with WADA regulations (55.5%), and the misuse of sports supplements represents an ethical dilemma for some. CONCLUSION: These findings indicate the necessity of a comprehensive education of all team members about sports supplements and careful supervision of the athletic development of young athletes.


Subject(s)
Athletes , Dietary Supplements , Health Knowledge, Attitudes, Practice , Adolescent , Athletic Performance , Croatia , Female , Germany , Humans , Japan , Male , Motivation , Prevalence , Serbia , Sports Nutritional Physiological Phenomena , Surveys and Questionnaires
19.
J Appl Physiol (1985) ; 126(6): 1694-1700, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31070952

ABSTRACT

Breath-hold divers (BHD) experience repeated bouts of severe hypoxia and hypercapnia with large increases in blood pressure. However, the impact of long-term breath-hold diving on cerebrovascular control remains poorly understood. The ability of cerebral blood vessels to respond rapidly to changes in blood pressure represents the property of dynamic autoregulation. The current investigation tested the hypothesis that breath-hold diving impairs dynamic autoregulation to a transient hypotensive stimulus. Seventeen BHD (3 women, 11 ± 9 yr of diving) and 15 healthy controls (2 women) completed two or three repeated sit-to-stand trials during spontaneous breathing and poikilocapnic conditions. Heart rate (HR), finger arterial blood pressure (BP), and cerebral blood flow velocity (BFV) from the right middle cerebral artery were measured continuously with three-lead electrocardiography, finger photoplethysmography, and transcranial Doppler ultrasonography, respectively. End-tidal carbon dioxide partial pressure was measured with a gas analyzer. Offline, an index of cerebrovascular resistance (CVRi) was calculated as the quotient of mean BP and BFV. The rate of the drop in CVRi relative to the change in BP provided the rate of regulation [RoR; (∆CVRi/∆T)/∆BP]. The BHD demonstrated slower RoR than controls (P ≤ 0.001, d = 1.4). Underlying the reduced RoR in BHD was a longer time to reach nadir CVRi compared with controls (P = 0.004, d = 1.1). In concert with the longer CVRi response, the time to reach peak BFV following standing was longer in BHD than controls (P = 0.01, d = 0.9). The data suggest impaired dynamic autoregulatory mechanisms to hypotension in BHD. NEW & NOTEWORTHY Impairments in dynamic cerebral autoregulation to hypotension are associated with breath-hold diving. Although weakened autoregulation was observed acutely in this group during apneic stress, we are the first to report on chronic adaptations in cerebral autoregulation. Impaired vasomotor responses underlie the reduced rate of regulation, wherein breath-hold divers demonstrate a prolonged dilatory response to transient hypotension. The slower cerebral vasodilation produces a longer perturbation in cerebral blood flow velocity, increasing the risk of cerebral ischemia.


Subject(s)
Brain/physiology , Diving/physiology , Homeostasis/physiology , Adult , Apnea/metabolism , Apnea/physiopathology , Blood Flow Velocity/physiology , Blood Pressure/physiology , Brain/metabolism , Breath Holding , Carbon Dioxide/metabolism , Cerebrovascular Circulation/physiology , Electrocardiography/methods , Female , Heart Rate/physiology , Humans , Hypercapnia/metabolism , Hypercapnia/physiopathology , Hypoxia/metabolism , Hypoxia/physiopathology , Male , Middle Cerebral Artery/metabolism , Middle Cerebral Artery/physiology , Ultrasonography, Doppler, Transcranial/methods , Vasodilation/physiology
20.
Am J Physiol Heart Circ Physiol ; 316(3): H722-H733, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30575438

ABSTRACT

Cardiovascular diseases (CVD) are highly prevalent in spinal cord injury (SCI), and peripheral vascular dysfunction might be a contributing factor. Recent evidence demonstrates that exposure to heat stress can improve vascular function and reduce the risk of CVD in uninjured populations. We therefore aimed to examine the extent of vascular dysfunction in SCI and the acute effects of passive heating. Fifteen participants with cervical SCI and 15 uninjured control (CON) participants underwent ultrasound assessments of vascular function and venous blood sampling for biomarkers of endothelial activation (i.e., CD62e+) and apoptosis (i.e., CD31+/42b-) before and after a 60-min exposure to lower limb hot water immersion (40°C). In SCI, macrovascular endothelial function was reduced in the brachial artery [SCI: 4.8 (3.2)% vs. CON: 7.6 (3.4)%, P = 0.04] but not the femoral artery [SCI: 3.7 (2.6)% vs. CON: 4.0 (2.1)%, P = 0.70]. Microvascular function, via reactive hyperemia, was ~40% lower in SCI versus CON in both the femoral and brachial arteries ( P < 0.01). Circulating concentrations of CD62e+ were elevated in SCI versus CON [SCI: 152 (106) microparticles/µl vs. CON: 58 (24) microparticles/µl, P < 0.05]. In response to heating, macrovascular and microvascular function remained unchanged, whereas increases (+83%) and decreases (-93%) in antegrade and retrograde shear rates, respectively, were associated with heat-induced reductions of CD62e+ concentrations in SCI to levels similar to CON ( P = 0.05). These data highlight the potential of acute heating to provide a safe and practical strategy to improve vascular function in SCI. The chronic effects of controlled heating warrant long-term testing. NEW & NOTEWORTHY Individuals with cervical level spinal cord injury exhibit selectively lower flow-mediated dilation in the brachial but not femoral artery, whereas peak reactive hyperemia was lower in both arteries compared with uninjured controls. After 60 min of lower limb hot water immersion, femoral artery blood flow and shear patterns were acutely improved in both groups. Elevated biomarkers of endothelial activation in the spinal cord injury group decreased with heating, but these biomarkers remained unchanged in controls.


Subject(s)
E-Selectin/blood , Endothelium, Vascular/physiopathology , Heat-Shock Response , Spinal Cord Injuries/physiopathology , Adult , Arteries/diagnostic imaging , Biomarkers/blood , Cervical Vertebrae/injuries , Endothelium, Vascular/diagnostic imaging , Female , Hemorheology , Humans , Hyperthermia, Induced , Male , Microvessels/diagnostic imaging , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...